

Effects of atmospheric circulations on the interannual variation in PM_{2.5} concentrations over the Beijing-Tianjin-Hebei region in 2013-2018

4 Xiaoyan Wang^{*1,2}, Renhe Zhang^{1,2}

5 1. Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan
6 University, Shanghai, China

7 2. Big Data Institute for Carbon Emission and Environmental Pollution, Fudan University,
8 Shanghai, China

9
10 Correspondence to: wangyufd@fudan.edu.cn

16 Abstract

17 The Chinese government has made many efforts to mitigate fine particulate matter (PM_{2.5}) pollution
18 in recent years by taking strict measures on air pollutants reduction, which has generated the
19 nationwide improvements in air quality since 2013. However, under the stringent air pollution
20 controls, how PM_{2.5} concentration varies and how much the meteorological conditions contribute
21 to the interannual variations in PM_{2.5} concentrations are still unclear, which is very important for
22 the local government to assess the emission reduction of previous year and adjust mitigation
23 strategies of next year. The effects of atmospheric circulation on the interannual variation in
24 wintertime PM_{2.5} concentrations over the Beijing-Tianjin-Hebei (BTH) region in the period of 2013-

25 2018 are evaluated in this study. Generally, the transport of clean and dry air masses and unstable
26 boundary layer working with the effective near-surface horizontal divergence or pumping action at
27 the top of the boundary layer benefit for the horizontal or vertical diffusion of surface air pollutants.
28 Instead, the co-occurrence of a stable boundary layer, frequent air stagnation, positive water vapor
29 advection and deep near-surface horizontal convergence exacerbate the air pollution. Favorable
30 circulation conditions lasting for 2~4 days are beneficial for the diffusion of air pollutants, and 3~7
31 days of unfavorable circulation events exacerbate the accumulation of air pollutants. The occurrence
32 frequency of favorable circulation events is consistent with the interannual variation in seasonal
33 mean $PM_{2.5}$ concentrations. There is better diffusion ability in the winters of 2014 and 2017 than in
34 other years. A 76.5% of the observed decrease in $PM_{2.5}$ concentrations in 2017 over the BTH region
35 could be attributed to the improvement in atmospheric diffusion conditions. It is essential to exclude
36 the contribution of meteorological conditions to the variation in interannual air pollutants when
37 making a quantitative evaluation of emission reduction measurements.

38

39 **Introduction**

40 Rapid economic development and associated emissions have led to recent severe air pollution over
41 China, which has become a central issue of concern for the public and governments (Wang et al.,
42 2018; Zhang et al., 2014; Song et al., 2018; Mu and Zhang, 2014; Tao et al., 2018). High levels of
43 fine particulate matter ($PM_{2.5}$) concentrations influence people's daily lives and threaten public
44 health (Liu et al., 2019; Zhao et al., 2018a; Hong et al., 2019; Zhang et al., 2017). In addition, they
45 are efficient in scattering and absorbing solar radiation, and are involved in the climate change by
46 changing the surface energy budget (Wang et al., 2009; Wang et al., 2017; Bi et al., 2016; Chen et al.,
47 2019b; Li et al., 2018; Zhao et al., 2019b; Che et al., 2019). To mitigate $PM_{2.5}$ pollutions, the Chinese
48 government issued the Air Pollution Prevention and Control Action Plan (hereinafter referred to as
49 the Clean Air Action hereinafter) in 2013, which required the Beijing-Tianjin-Hebei (BTH) region,
50 Yangtze River Delta and Pearl River Delta to reduce their $PM_{2.5}$ concentrations by 15~25% from
51 2013 to 2017 (China's State Council, 2013). A series of stringent clean air actions was implemented
52 to improve air quality, including strengthening industrial emission standards, phasing out small and

53 polluting factories, strengthening vehicle emission standards and more (Zhang and Geng, 2019). To
54 further improve air quality, the state council has released a three-year action to win the battle for a
55 blue sky in 2018, solidifying a timetable and roadmap for improving air quality. By 2020, emissions
56 of sulfur dioxide and nitrogen oxides are required to decline by at least 15% from 2015 levels, while
57 cities with low air quality standards should see their PM_{2.5} density fall by at least 18%, according to
58 the plan (China's State Council, 2018). To achieve these goals, many efforts have focused on
59 adjustments to industrial, energy and transportation structures involved with central to local
60 government.

61 With the implementation of the toughest-ever clean air actions from Clean Air Action, the
62 anthropogenic emissions show significant decreased by 59% for SO₂, 21% for NO_x, 23% for CO,
63 36% for PM₁₀ and 33% for primary PM_{2.5} from 2013 to 2017 (Zheng et al., 2018; Wang et al., 2019b).
64 As a consequence, air quality in China improved significantly in terms of annual mean PM_{2.5}
65 concentrations, polluted days and pollution durations from 2013 to 2017, and surpassed the
66 mitigation targets of the Clean Air Action (Fan et al., 2020; Zhao et al., 2018b; Gui et al., 2019;
67 Zhong et al., 2018). By the end of 2017, the BTH region achieved its primary goal of reducing the
68 annual average PM_{2.5} concentration to less than 60 µg/m³ with a decreasing trend of -9.3±1.8 µg/m³
69 (Wang et al., 2019b). However, in addition to air pollutants emissions, atmospheric meteorological
70 conditions play an important role in the transport, accumulation, scavenging and chemical
71 production of particles, which drives the evolution of every air pollution episode (Zhang et al., 2012;
72 Leung et al., 2018; Huang et al., 2018; Wang et al., 2016). Moreover, the interannual to interdecadal
73 variations in meteorological or climate signals (e.g., monsoon intensity, variation in sea ice, and the
74 occurrence of El Niño Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO)) also
75 have significant effects on the variation in ambient PM_{2.5} concentrations (Li et al., 2016; Chen et
76 al., 2019a; Zhao et al., 2018c; Dang and Liao, 2019; Feng et al., 2019; Yin et al., 2019). The global
77 warming associated with climate change may also contribute to the air pollution in China (Cai et al.,
78 2017; Zhang, 2017).

79 Recently, many researchers investigated how much of the recent decreased PM_{2.5} concentrations
80 could be attributed to the contribution to emission reduction compared to the effects of atmospheric

81 elements. The studies have been carried out to evaluate the relative effects of emission reduction
82 and meteorological conditions on the recent decrease in PM_{2.5} concentrations (Ding et al., 2019;
83 Guo et al., 2019; He et al., 2018; Zhang et al., 2019c; Zhao et al., 2019a). Based on a multiple linear
84 regression model, 12% of the decreased PM_{2.5} over China is due to favorable meteorological
85 conditions between 2013 and 2018 (Zhai et al., 2019). For the BTH region, Zhang et al. (2019b)
86 used the parameter linking air quality and meteorology (PLAM) index (a meteorological pollution
87 index for air quality) to evaluate meteorological conditions, and found that only approximately 5%
88 of the 39.6% reduction in PM_{2.5} in 2017 could be attributed to meteorological changes. The relative
89 contribution of emission reduction to the decreased PM_{2.5} concentrations in Beijing calculated by
90 the statistical model and Weather Research and Forecasting-Community Multiscale Air Quality
91 (WRF-CMAQ) was 80%, indicating that emission reductions were crucial for air quality
92 improvement in Beijing from 2013 to 2017 (Chen et al., 2019c). In addition, Zhang et al. (2019a)
93 quantified the contribution of different emission control policies to the rapid improvement in PM_{2.5}
94 pollution over China from 2013 to 2017 and highlighted the significant effects of strengthening
95 industrial emission standards and upgrading industrial boilers on air quality improvement during
96 the Clean Air Action.

97 Based on the investigation of different methods, the effectiveness of emission mitigation actions
98 was confirmed to drive the recent remarkable improvement in air quality in China since 2013.
99 However, most of the existing studies have focused on the relative long-term variation of air quality
100 (i.e., five to six years since 2013) and evaluated emission reduction effects over a multiyear time
101 scale. The Chinese government took a series of steps to reduce air pollutant emissions, which
102 requires a certain sacrifice regarding economic growth. In this situation, the local government need
103 an accurate evaluation of the emission reduction effects during the previous year and reasonable
104 adjustment of the mitigation policies of next year to keep the balance of economic growth and
105 environmental protection. The accurate evaluation of emission reduction effects should exclude the
106 meteorological element contribution to the interannual variations of air quality. Therefore, the
107 contribution of meteorological conditions to the interannual variation in wintertime PM_{2.5}
108 concentrations over the BTH region will be discussed in this study.

109

110 **2. Data and Methods**

111 **2.1 On-site PM_{2.5} mass concentration**

112 The wintertime (December to February of the following year) hourly observed PM_{2.5} mass
113 concentration dataset over China from 2013 to 2018 was provided by the Ministry of Ecology and
114 Environment of the People's Republic of China (<http://106.37.208.233:20035>). This study mainly
115 focuses on the region of BTH region (113.5°-119°E and 36°-42.5°N, the solid-line box in Fig. 3),
116 and 114 PM_{2.5} stations are available over this region. The hourly PM_{2.5} concentration was averaged
117 to the daily mean value with no more than 40% missing data.

118 **2.2 Method of atmospheric circulation classification**

119 Commonly used objective classification methods include correlation, clustering, nonlinear methods,
120 principal component analysis (PCA), and fuzzy analysis. Huth et al. (2008) compared these five
121 classification methods and proposed that the performance of the T-mode PCA was the best in terms
122 of its reproduction of predefined types, temporal and spatial stabilities, and reduced dependence on
123 preset parameters. The T-mode PCA has been successfully applied to studies of general circulation
124 models (Huth, 2000), climate change (Cavazos, 2000), and local air pollution (Xu et al., 2016;
125 Valverde et al., 2015; Miao et al., 2017; Li et al., 2019). Zhang et al. (Zhang et al., 2012) first
126 employed the obliquely rotated T-mode PCA method developed by COST action 733
127 (<http://www.cost733.org>) (Philipp et al., 2014) to identify the circulation pattern that is conductive
128 to PM pollution in North China. In this study, the four-times-daily dataset of the fifth generation
129 European Centre for Medium-Range Weather Forecasts (ECMWF ERA5) atmospheric reanalysis
130 in winters from 2013 to 2018 with a horizontal resolution of 0.25° was used for synoptic circulation
131 classification. The daily mean geopotential height fields at 925, 850 and 500 hPa were applied to
132 the T-mode PCA method in the Cost733 toolbox. Our target region is 105°-125°E and 30°-55°N (the
133 dashed box in Fig. 3).

134 **2.3 Model simulation**

135 The regional chemical/transport model WRF chemical model (WRF-Chem) version 4.0, was
136 applied to simulate the effects of meteorological condition variation on seasonal air pollution over
137 northern China at a horizontal resolution of 9 km (245*220 horizontal grid cells) and vertical
138 resolution of 33 layers. The simulation domain covers most areas of the North China region (Fig.
139 10). The initial and lateral meteorological boundary conditions are derived from the NCEP FNL
140 reanalysis data every 6 hours. The chemical and aerosol mechanisms used were the RADM2
141 chemical mechanism from Stockwell et al. (1990) and MADE/SORGAM aerosols (Ackermann et
142 al., 1998; Schell et al., 2001). MADE/SORGAM are used to simulate all major aerosol components
143 including sulfate, nitrate, ammonium, black carbon, organic carbon, sodium, chloride, mineral dust,
144 and water content. Madronich photolysis was used to calculate photochemical reactions. Other
145 major physical processes included the CAM shortwave radiation (Collins et al., 2004), RRTMG
146 longwave radiation (Iacono et al., 2008), the unified Noah land-surface model land surface option
147 and MYJ planetary boundary layer parameterization (Janjić, 1994).

148 To evaluate the impacts of meteorological contributions on the PM_{2.5} variation between the 2016
149 winter (Dec. 2016 to Feb. 2017) and 2017 winter (Dec. 2017 to Feb. 2018) over the BTH region,
150 we conducted two sensitivity runs: the same emissions as the 2016 winter and the actual
151 meteorological conditions of 2016 and 2017. Thus, the difference in the simulated PM_{2.5}
152 concentrations between the 2016 and 2017 winters could be attributed to the meteorological
153 variation. The anthropogenic emission inventory for 2016 developed by Tsinghua University was
154 used in this study (available at <http://www.meicmodel.org>), as is named the Multiresolution
155 Emission Inventory for China (MEIC), containing monthly anthropogenic emissions of SO₂, NO_x,
156 CO, NH₃, PM_{2.5}, PMcoarse, BC, OC and NMVOCs. The horizontal resolution of the MEIC used
157 in this study is 0.25°. Each simulation is initialized at 00:00 UTC on Nov. 15, and the first 15-day
158 simulations are regarded as the spin-up period. Daily mean PM_{2.5} concentrations between Dec. 1,
159 2016 to Feb. 28, 2017, and Dec. 1, 2017 to Feb. 28, 2018, are used to investigate the effects of
160 meteorological conditions on seasonal air pollution.

161

162 3. Results

163 3.1 Dominate synoptic circulation types in winter over the BTH region

164 As shown in Fig.1, the wintertime PM_{2.5} concentrations over the BTH region show a remarkable
165 decrease from 2013 to 2018 due to a series of air pollution reduction measures. Compared to 2013,
166 the mean PM_{2.5} concentration for 2018 decreased by 35.6% over 114 stations around the BTH region
167 (cf. Table 1). However, under the background of improved air quality, evident interannual variations
168 in PM_{2.5} concentrations have been observed in recent years. The PM_{2.5} concentrations in the winters
169 of 2016 and 2018 are higher than those in the same period of the previous year, with mean values
170 increasing by 18% and 13.36%, respectively. The high emissions of primary fine particulate matters
171 and its precursors are considered as internal factors of severe PM_{2.5} pollution in China; thus,
172 emission reduction is the most direct and effective way to improve local air quality. However, the
173 evolution of each air pollution episode is strongly affected by the local synoptic circulation pattern.
174 Both emissions and atmospheric conditions are related to the ambient PM_{2.5} concentration level. It
175 is essential to exclude the atmospheric circulation impacts on air quality when assessing emission
176 mitigation effects.

177 We use synoptic circulation types to measure the ability of atmospheric circulation to the accumulate,
178 remove, and transport air pollutants. The daily mean geopotential height fields at 925, 800 and 500
179 hPa in the winters of 2013 to 2018 (total of 451 days) are used to conduct objective synoptic
180 circulation classification based on the T-mode PCA method with the Cost733 toolbox. Three levels
181 of geopotential height fields (i.e., 925 850 and 500 hPa) in the lower to middle troposphere over
182 105°-125°E and 30°-55°N are used in circulation type (CT) classification. Six typical synoptic
183 circulation types (CTs) are identified during winter in the BTH region, with a total explained
184 variance of 70% (Fig. S1). The horizontal (i.e., sea level pressure (SLP), wind, relative humidity
185 (RH) and boundary layer height (BLH)) and vertical (i.e., atmospheric stability, vertical velocity,
186 temperature and divergence) distributions of meteorological variables are used to illustrate the
187 mechanism behind CT effects on air pollution. To obtain a broad view of the six CTs, the horizontal
188 distribution of atmospheric circulation patterns, as shown in Fig. 2 and Fig. 3 cover a larger area

189 than the area used in the CT classification with the Cost733 toolbox.

190 Fig. 2 and Fig. 3 exhibit the original and anomalous patterns of the mean SLP and surface wind field
191 of each CT, respectively. CT1 is the most frequent CT during the study period with an occurrence
192 frequency of 33% based on the results of the Cost733 classification. CT1 shows that a high-pressure
193 system originates in the Siberian region extending along central Inner Mongolia to southern China.
194 Northwesterly winds prevail in northern China and turn into northerly winds in southern China. The
195 mean wind speed is 3.27 m/s over the BTH region (cf. Table 2), which is the highest among the six
196 CTs and benefits the outward transport of local air pollutants. Fig. 3 shows the SLP and surface
197 wind anomalies of each CT. In the CT1 situation, the BTH region is located west of the cyclonic
198 anomaly, which is dominated by an obvious northwesterly wind anomaly. The wind field pattern
199 corresponds to the negative RH anomaly over the BTH region in Fig. 4. The vertical profiles of
200 dynamic and thermodynamic stratification are included to investigate vertical diffusion. Based on
201 the vertical distribution of atmospheric stability shown in Fig. 5, atmospheric stratification is
202 characterized by a stable layer at the top of the boundary layer for all the cases. For CT1, an obvious
203 unstable stratification occurs at the bottom of boundary layer over the BTH region, which enhances
204 the turbulent activities and is beneficial for the vertical diffusion of air pollutants. The unstable
205 boundary layer is also confirmed by the positive BLH anomaly and elevated negative temperature
206 anomaly, as shown in Fig. S2 and Fig. S3. Fig. S4 shows a strong surface divergence and strong top
207 convergence vertical pattern in CT1, which generates sinking movement over the BTH region. As
208 shown in Fig. 6, a subsidence anomaly appears at the lower to middle troposphere over the BTH
209 region with a mean descending velocity of 0.04 pa/s between 850 and 1000 hPa. The strong
210 downdraft brings a clean and dry air mass to the surface and increases the horizontal divergence of
211 surface air pollutants (shown in Fig. S4). The cold, clean and dry air mass transported by the surface
212 northwesterly winds, unstable boundary layer and strong horizontal divergence are favorable for the
213 improvement in ambient air quality.

214 The occurrence frequency of CT2 is 11%. As shown in Fig. 2, a high-pressure system around Baikal
215 is obvious under the CT2 condition, which is stronger and further east than CT1. The BTH region
216 is located at the ridge of the high-pressure system with weak northwesterly winds occurring in the

217 northern BTH region, which turn to northeasterly in the southern BTH region. The anomalous fields
218 in Fig. 3 show a large area of a positive SLP anomaly over the north of 40°N. The BTH region is
219 just located at the south edge of the anticyclone anomaly with prevailing northeasterly surface wind.
220 Fig. 4 shows a weak negative RH anomaly over the BTH region due to the dry wind from the
221 northeast. Similar to CT1, CT2 also shows an unstable stratification in the boundary layer, which
222 increases the vertical diffusion of air pollution. Both the weak positive BLH anomaly and elevated
223 negative temperature anomaly indicate the enhanced instability of the atmospheric boundary layer
224 (Figs. S2-S3). Intense updraft is stimulated by strong convergence at the surface working with
225 strong divergence at the top of the boundary layer, as shown in Fig. S4. As shown in Fig. 6, upward
226 movement dominates in the middle-low troposphere over the BTH region with a mean ascending
227 velocity of 0.0358 pa/s between 850 and 1000 hPa. Although the elevated temperature stability is
228 relatively strong in CT2, the bottom-up updraft breaks through the stable layer and brings the surface
229 air pollutants to the free atmosphere. In summary, the unstable boundary layer working with the
230 upper divergence pumping action enhances the vertical diffusion of surface air pollutants, which
231 will decrease the surface concentrations of air pollutant.

232 CT3 shows a relatively uniform SLP distribution with a weak pressure gradient over the BTH region
233 as shown in Fig. 2. The prevailing westerly wind hinders the southward transport of the cold air
234 mass to some extent. The cyclonic anomaly with southwesterly wind can be found over the BTH
235 region. As shown in Fig. 3, the southwesterly wind transports the upstream air pollutants and warm
236 moisture to the BTH, which accelerates the hygroscopic growth of particles, promotes the gas-to-
237 particle transformation and increases the local air pollutant concentration (Wang et al., 2019a). The
238 positive RH and temperature anomaly in Fig. 4 and Fig. S3 correspond to the southwesterly wind
239 anomaly. Unlike to CT1 and CT2, CT3 shows a stable stratification below 700 hPa. In addition, the
240 upper unstable stratification of CT3 is lower than that of CT1 and CT2, indicating a negative BLH
241 anomaly (as shown in Fig. S2). CT3 also shows upward movement over the BTH region, but it is
242 weaker than CT2 by one order of magnitude. By contrast, the effects of the stronger near-surface
243 convergence will offset the upward transport, which will increase the local air pollutants. The stable
244 boundary layer, southeasterly warm moisture and effective convergence aggravate local air
245 pollution.

246 For the cases of CT4 and CT5, the BTH region is co-located with a weak surface anticyclone with
247 low average surface winds of 2.24 and 2.58 m/s, respectively. The calm surface winds coexisting
248 with the lower BLHs (cf. Fig. S2) decrease the ventilation coefficient and increase the occurrence
249 of air stagnation conditions. The surface anomaly fields show southeasterly and southerly winds in
250 CT4 and CT5, respectively. As shown in Fig. 4, the northward wind anomaly increases the humidity
251 and air pollutants of the BTH region. Based on the vertical profiles of temperature and atmospheric
252 stability, an elevated positive temperature anomaly increases the stability of the boundary layer, thus
253 reducing the vertical diffusion of air pollutants. The weak near surface convergence could increase
254 the accumulation of air pollution, but moderate upward movement will bring the surface air
255 pollutants to the outside of the boundary layer, which offsets the surface convergence to some extent.
256 CT4 and CT5 had the same occurrence of 15% during the study period. Although the CT4 and CT5
257 show different large-scale surface circulation patterns, the meteorological variables over the BTH
258 region are almost the same. The air stagnation conditions and southerly water vapor transport result
259 in the accumulation and hygroscopic growth of particles.

260 In terms of CT6, the BTH region is located at the ridge of the Mongolian anticyclone, and its high-
261 pressure system is weaker than that of CT2. The prevailing wind turns from northwest to northeast
262 over the BTH region. As shown by the surface meteorological anomaly distribution, the BTH region
263 is situated at the border between the northern anticyclonic and southern cyclonic anomalies with
264 prevailing northeasterly wind coming from the Bohai Sea. A large amount of water vapor from the
265 sea plays an important role in the hygroscopic growth of particles over the BTH region. Fig. 5
266 indicates a stable boundary layer when CT6 occurs, which reduces the vertical diffusion of surface
267 air pollutants. CT6 shows a deep horizontal convergence under 850 hPa, which is favorable for the
268 accumulation of moisture and air pollutants. The effect of the relatively weak divergence above
269 strong convergence is not distinct for the improvement in surface air quality. Therefore, the
270 circulation pattern of warm moist flow from the sea, a stable boundary and effective horizontal
271 convergence exacerbates local air pollution.

272 **3.2 Atmospheric circulation pattern effects on air quality**

273 The potential mechanisms of the CT effects on local air quality are discussed in the last section.

274 Combinations of the following situations are favorable for the improvement in air quality:
275 transport of a clean and dry air mass, unstable boundary layer, effective horizontal divergence and
276 vertical transport of air pollutants to the free atmosphere. In contrast, the positive humidity anomaly,
277 stable boundary layer, frequent air stagnation conditions and deep horizontal convergence
278 exacerbate air pollution.

279 To exclude the effects of interannual variation in air quality due to the emission reduction
280 background, the daily PM_{2.5} concentration distribution displayed by year and CT, as shown in Fig.
281 7 reveals the effects of CT on air quality. The mean and median values of PM_{2.5} concentrations
282 during each CT are summarized in Table 1. The mean and median PM_{2.5} concentrations in the CT1
283 condition are both lower than the seasonal mean and median for all years. Under the CT2 condition,
284 the PM_{2.5} concentrations are also lower than the seasonal mean except for 2014. However, the PM_{2.5}
285 concentrations are generally higher than the seasonal mean in CT3-CT6. As for the multiyear
286 average, it shows distinctly lower PM_{2.5} concentrations in CT1 and CT2 than the other CTs. Based
287 on the PM_{2.5} concentration in each CT, CT1 and CT2 can be considered as favorable CTs for air
288 quality, which are beneficial for the diffusion of air pollutants, and CT3-CT6 are unfavorable CTs,
289 which exacerbate air pollution.

290 Giving the above analysis, PM_{2.5} concentration tended to be lower than normal when a favorable
291 CT occurred, and vice versa. Therefore, the occurrence frequency of each CT plays an important
292 role in air quality during the study period. CT1 and CT2 are combined as the favorable circulation,
293 and CT3-CT6 are referred to as the unfavorable circulation. Fig. S5 exhibits the seasonal
294 occurrences of favorable and unfavorable circulation types. Fifty-four days of unfavorable
295 circulation occurred in winter 2013, which is the greatest frequency during the study period. A
296 higher unfavorable circulation frequency was also shown in 2014 and 2018 winters. In contrast, the
297 favorable circulations were much higher in 2015 and 2017 winters than in the other winters. The
298 seasonal frequencies of favorable and unfavorable circulations are in line with the trend in seasonal
299 PM_{2.5} concentrations. It is worth noting that although the seasonal mean PM_{2.5} concentration in the
300 winter of 2015 (Dec. 2015 to Feb. 2016) is lower than that of 2014, but the PM_{2.5} concentration in
301 Dec. 2015 is much higher than that in Dec. 2014. The high PM_{2.5} concentration in Dec. 2015 is

302 consistent with the high frequency of unfavorable CTs during that time, which indicates the
303 robustness of circulation classification.

304 However, every air pollution event has a duration from the development to decay stage. Generally,
305 several days are needed for the accumulation of air pollutants, followed by a relatively quick
306 removal. The variation in meteorological conditions controls the evolution of each air pollution
307 episode. Therefore, the duration of each CT determines the duration of the air pollution event. Fig.
308 8 exhibits the variation in the PM_{2.5} concentration anomaly with the duration of favorable and
309 unfavorable CTs. As discussed above, the favorable circulations generally correspond to the
310 negative PM_{2.5} concentration anomaly (lower than the monthly mean), while the unfavorable
311 circulations result in a positive PM_{2.5} concentration anomaly. When the favorable circulation
312 duration shorter than 4 days, the absolute values of the negative anomaly of PM_{2.5} concentrations
313 increase with the duration of favorable circulation; however, with the continuous increase in
314 favorable circulation durations, the magnitude of the negative anomaly of PM_{2.5} concentrations
315 slightly decreases and remains unchanged. Similarly, the positive anomalies of the PM_{2.5}
316 concentrations increase with the duration of unfavorable circulation durations when the duration is
317 less than 7 days. However, the effect of circulation on air pollutant diffusion is not obvious when a
318 one-day favorable or one-two-day unfavorable circulation occurs. That is favorable CTs lasting 2~4
319 days are beneficial for the diffusion of air pollutants; and unfavorable circulation events lasting 3~7
320 days exacerbate the accumulation of air pollutants.

321 The occurrences of 2~4 days favorable circulation and 3~7 days of unfavorable CTs are shown in
322 Fig. 9. It shows a high frequency of 2~4 days of favorable circulation in 2017 and 2014 with totally
323 15 and 13 days, respectively. The favorable circulation occurrences are lower in the winters of 2016
324 and 2018 than in the other winters. In terms of the 3~7 days of unfavorable circulations, the years
325 of 2013, 2016 and 2018 show higher frequencies than the other years. Therefore, based on the
326 occurrence of favorable and unfavorable CTs, the atmospheric diffusion abilities are better in 2014
327 and 2017 than in the other years. The significant improvement in air quality in 2014 and 2017 is
328 consistent with the improvement in atmospheric diffusion abilities compared to their previous years.

329 **3.3 Contributions of atmospheric diffusion condition variations to the PM_{2.5} concentration
330 decrease between 2016 and 2017**

331 Although the interannual variation in PM_{2.5} concentrations show good correlation with the
332 occurrence of favorable or unfavorable circulation, Sec. 3.2 is just a qualitative analysis. Taking the
333 interannual variation in PM_{2.5} concentrations between 2016 and 2017 as an example, the model
334 simulation based on the WRF-Chem model is used to evaluate the quantitative contributions of
335 meteorological condition variations to the PM_{2.5} concentration decrease in 2017. The emissions are
336 fixed in 2016 (Dec. 2016 to Feb. 2017), and the meteorological fields come from the NCEP GDAS
337 Final Analysis dataset for the 2016 and 2017 winters, respectively. The meteorological fields and
338 air pollutants over some cities from north to south in the simulated domain (i.e., Shijiazhuang,
339 Beijing, Tianjin, Xuzhou and Shanghai) are included to evaluate the performance of the model
340 simulation. Fig. S6 shows the variations in the observed and simulated daily mean air temperature,
341 sea level pressure, relative humidity and surface wind speed from Jan. to Feb. of 2017. Although
342 the model slightly overestimates the surface wind speed over Shijiazhuang and Shanghai, most of
343 the simulated meteorological variables agree well with the observations over all cities. For the
344 concentration of air pollutants in Fig. S7, the model generally underestimates the PM_{2.5}
345 concentrations under highly polluted conditions, with a bias of 44.9%~59.6% (different cities) when
346 the observed PM_{2.5} was higher than 75 $\mu\text{g}/\text{m}^3$. However, the bias between the simulated and observed
347 PM_{2.5} concentrations decreased to 12.4%~26.8% at lower PM_{2.5} concentration level. Due to the
348 deficiency of the PBL scheme (Tie et al., 2015), the heterogeneous/aqueous process in the model
349 (Li et al., 2011) and uncertainty in the emission inventory, current air quality models show limited
350 capacity in severe air pollution episodes. However, the day-to-day variation in all the air pollutants
351 can be well captured by the WRF-Chem model, with the highest correlation coefficient of 0.76
352 between the observed and simulated PM_{2.5} in Xuzhou. Overall, both the meteorological variables
353 and air pollutants are well reproduced by the WRF-Chem model, which provides confidence for
354 further discussions.

355 The simulated seasonal mean PM_{2.5} concentrations of the 2016 and 2017 winters are presented in
356 Fig. S8. It shows a significant spatial distribution of seasonal PM_{2.5} concentrations with higher

357 concentrations over the BTH region, Shandong and Henan Provinces. Even though the emissions
358 were set to the level of 2016, the simulated seasonal PM_{2.5} concentrations in 2016 were much higher
359 than those in 2017 due to the difference in meteorological fields. Fig. 10 exhibits the observed and
360 simulated PM_{2.5} concentration differences between 2017 and 2016. Both the observations and
361 simulations show significant negative growth in PM_{2.5} concentrations over northern China from
362 2016 to 2017 in winter but relatively weak positive growth over the lower Yangtze River Delta. The
363 BTH region is located at the center of negative growth, with an observed average of 46.3 µg/m³
364 decrease of PM_{2.5} concentration from 2016 to 2017. While, the simulated difference of PM_{2.5}
365 between 2016 and 2017 winter is -8.4 µg/m³, which is much lower than the observed value. The
366 absolute PM_{2.5} concentration would be underestimated because of the limited performance of the
367 WRF-Chem model under severe air pollution; therefore, the relative differences between 2016 and
368 2017 are involved to evaluate the effects of meteorological field variations on the decrease in PM_{2.5}
369 concentrations. Based on the relative difference in PM_{2.5} concentration between 2016 and 2017, the
370 observed difference at 114 stations over the BTH region is -37.1% compared to the mean value of
371 2016 winter, and the averaged simulated difference is -28.4% over the region of 113°-117.5°E and
372 36°-42°N, which is due to the difference in meteorological conditions. Thus, 76.5% of the observed
373 37.1% decrease in PM_{2.5} concentration in 2017 over the BTH region could be attributed to the
374 improvement in atmospheric diffusion conditions. The variation of meteorological conditions plays
375 an important role in the interannual variation in air pollutant concentrations.

376

377 **4. Conclusions and Discussion**

378 Recent severe PM_{2.5} pollution in China has aroused unprecedented public concern. The Chinese
379 government has implemented many emission reduction measurements, which has greatly improved
380 the air quality recently. The wintertime PM_{2.5} concentration of 2018 decreased by 35.6% compared
381 to 2013 over the BTH region. However, there was obvious interannual variation in PM_{2.5}
382 concentrations from 2013 to 2018. Atmospheric circulation classification method based on the
383 Cost733 toolbox is used to investigate the mechanism behind atmospheric circulation effects on air
384 pollutant diffusion. Six CTs are identified during the winters from 2013 to 2018 over northern China,

385 and two of which are considered as favorable circulations for air pollutant diffusion and the other
386 four CTs exacerbate local air pollution. Generally, the transport of clean and dry air mass and
387 unstable boundary layers working with the effective near-surface horizontal divergence or pumping
388 action at the top of the boundary layer will benefit for the horizontal or vertical diffusion of surface
389 air pollutants. However, the co-occurrence of a stable boundary layer, frequent air stagnation,
390 positive water vapor advection and deep near-surface horizontal convergence exacerbates the air
391 pollution.

392 Except for the atmospheric circulation characteristic of CTs, the durations of each circulation type
393 also have a great influence on the local air quality. The one-day favorable or less than two-day
394 unfavorable circulations have no significant effects on the diffusion and accumulation of air
395 pollutants. Comparatively speaking, favorable CTs lasting for 2~4 days are beneficial for the
396 diffusion of air pollutants, and the 3~7 days of unfavorable circulation events exacerbate the
397 accumulation of air pollutants. The occurrences of 2~4 days of favorable and 3~7 days of
398 unfavorable circulation are used to evaluate the atmospheric diffusion ability, which shows better
399 diffusion abilities in 2014 and 2017 than in the other years. Taking the decrease of PM_{2.5}
400 concentration between 2016 and 2017 as an example, 76.5% of the decreased concentration over
401 the BTH region could be attributed to the improvement in atmospheric diffusion conditions of 2017.
402 The variation in meteorological conditions plays an important role in the interannual variation in air
403 pollutant concentrations. The 2020 is the key and target year for the three-year action to win the
404 battle for a blue sky of 2018. It is essential to exclude the contribution of meteorological conditions
405 to the variation in interannual air pollutants when making a quantitative evaluation of emission
406 reduction measurements.

407

408 **Acknowledgments:** This study was supported by the National Natural Science Foundation of China
409 (41790470 and 41805117).

410

411 **Code/Data availability:** The release version 4.0 of WRF-Chem can be download from
412 http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. Hourly PM_{2.5} concentration

413 observations were obtained from the website of Ministry of Ecology and Environment of the
414 People's Republic of China (<http://106.37.208.233:20035>). Daily four times ECMWF ERA5 dataset
415 during 2013 to 2018 are downloaded from <https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5>. Hourly observations of meteorological variables used for the WRF-Chem simulation
416 evaluations are downloaded from the Intergrated Surface Database of National Climate Data Center
417 (<https://www.ncdc.noaa.gov/isd>).
418

419

420 **Competing interests:** The authors declare that they have no conflict of interest.

421

422 **Author contributions:** Wang X. and Zhang R. designed research; Wang X. performed the analyses
423 and wrote the paper; All authors contributed to the final version of the paper.

424

425 **Figure Captions:**

426 Figure 1. Interannual variation in the wintertime PM_{2.5} concentrations at 114 stations over the BTH region. In each
427 box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th
428 percentiles, respectively. The whiskers extending to the most extreme data points are considered outliers. The region
429 covered by the blue box in Fig. 2 is considered as the BTH region (113°–117.5°E and 36°–42°N).

430 Figure 2. The distribution of sea level pressure (shaded, unit: pa) and 10 m wind fields (vector, unit: m/s) in each
431 circulation type. The number over each subplot indicates the occurrence frequency of the specific circulation type.
432 The solid blue box is the location of BTH region. The daily mean geopotential height fields at 925, 850 and 500 hPa
433 over the dashed blue box (105°–125°E and 30°–55°N) were applied to T-mode PCA method with the cost733 toolbox.
434 The region mean wind speed of each circulation type is shown in Table 2.

435 Figure 3. The distribution of sea level pressure (unit: pa) and 10 m wind fields (unit: m/s) anomaly in each circulation
436 type. The anomaly values are with respect to the 1980–2010 mean. Regional mean wind speed anomaly of each
437 circulation type is summarized in Table 2.

438 Figure 4. The distribution of relative humidity in each circulation type (unit: %). The anomaly values are with respect
439 to the 1980–2010 mean.

440 Figure 5. Zonal profile of temperature lapse rate over the BTH region (36°–42°N) (unit: K/100 m). The gray region
441 indicates the average altitude over 36°–42°N. The region between the two dashed lines is the horizontal location of
442 the BTH region (113°–117.5°E).

443 Figure 6. Zonal vertical profile of vertical velocity anomaly over BTH region (unit: pa/s). The anomaly of the vertical
444 velocities is with respect to the 1980 to 2010 mean value.

445 Figure 7. The box plot of the PM_{2.5} concentrations varies with the circulation types. To exclude the effect of emission
446 reduction on the annual mean PM_{2.5} concentrations, the PM_{2.5} distributions at the year and multiyear (average) scales
447 are shown here, respectively. The dashed line for each year indicates the median PM_{2.5} concentrations in wintertime
448 of a specific year.

449 Figure 8. The daily PM_{2.5} concentration anomalies vary with favorable (F) and unfavorable (U) event durations. The
450 occurrences of CT1 and CT2 are collectively called favorable events, and CT3 to CT6 are referred to as unfavorable
451 events. U1 indicates an unfavorable circulation event lasting for one day, and U2 means a two-day event. The central
452 red line in each box indicates the median, and the circle is the mean value.

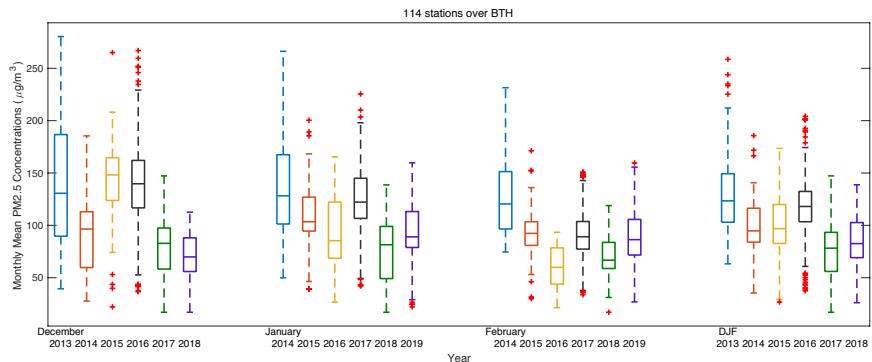
453 Figure 9. Occurrence frequencies of the effective favorable and unfavorable events. The effective favorable events
454 referred to the favorable events lasting for two to four days. The effective unfavorable events indicate the unfavorable

455 events lasting for three to seven days. The specific number of days for favorable/unfavorable events is shown on the
456 top of each bar.

457 Figure 10. Distributions of the observed and simulated PM_{2.5} difference between the winters of 2016 and 2017. The
458 left panel is the absolute value (unit: $\mu\text{g}/\text{m}^3$) and the right panel is the relative difference with respect to the mean
459 value of 2016 (unit: %). The simulated seasonal mean PM_{2.5} concentrations during the two years are shown in Fig.
460 S8.

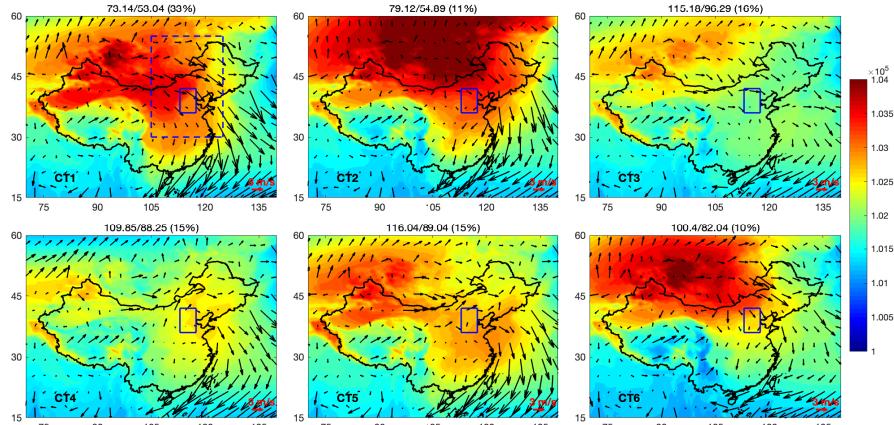
461

462 Table 1. The seasonal mean and median PM_{2.5} concentrations in each atmospheric circulation type (CT) over the
463 BTH region. PM_{2.5} concentrations in bold represent the mean/median value of each CT lower than the all-case
464 seasonal mean/median value.


Seasonal Mean/ Median ($\mu\text{g}/\text{m}^3$)	CT1	CT2	CT3	CT4	CT5	CT6
2013 (123.97/97.23)	104.99/71.42	94.51/69.33	144.76/118.50	135.47/117.20	166.28/156.52	67.90/47.21
2014 (93.07/75.79)	71.03/51.52	122.99/109.37	105.91/96.82	86.26/72.06	115.37/94.69	118.16/110.17
2015 (95.67/65.97)	58.56/38	89.38/73.07	134.77/114.69	135.91/106.36	124.15/99.81	106.14/70.63
2016 (112.94/91.32)	84.74/66.16	110.02/88.10	138.96/114.26	122.86/95.02	142.52/128.77	132.95/129.52
2017 (70.44/54.07)	56.49/43.16	60.70/39.61	80.03/67.39	83.89/67.24	93.63/79.28	69.77/52.23
2018 (79.85/63.02)	77.99/60.68	51.77/37.43	89.26/77.57	86.70/81.35	75.08/52.72	108.60/93.02
AVERAGE (95.27/72.22)	73.14/53.04	79.12/54.89	115.18/96.29	109.85/88.25	116.04/89.04	100.40/82.04

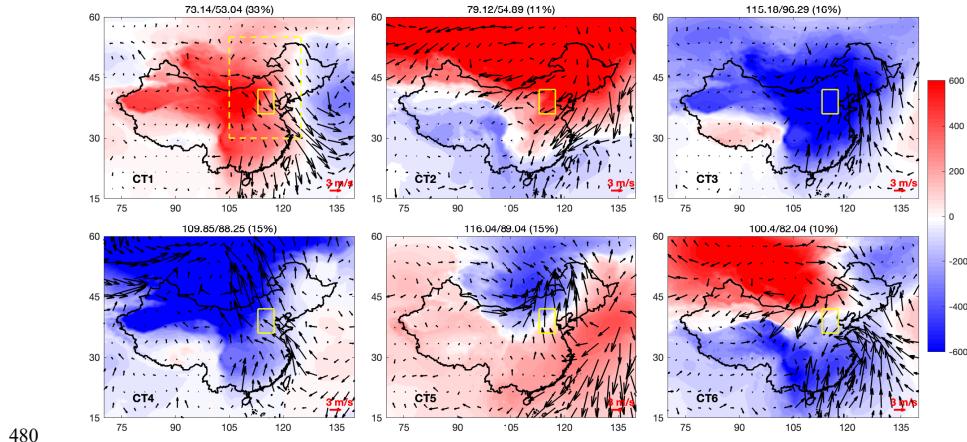
465

466 Table 2. Regional mean meteorological variables over the BTH region under each circulation type

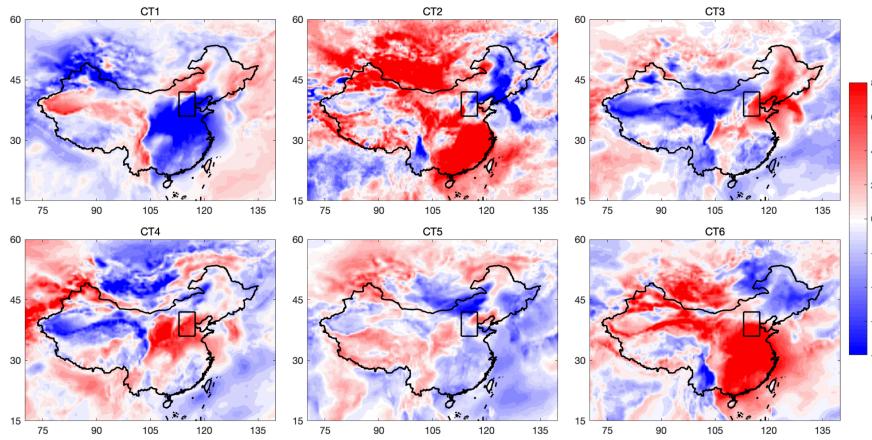

Variables	CT1	CT2	CT3	CT4	CT5	CT6
Surface wind speed (m/s)	3.27	2.31	2.71	2.24	2.58	2.54
Surface wind speed anomaly (m/s)	0.53	-0.42	-0.04	-0.49	-0.15	-0.19
Mean vertical velocity anomaly between 850 to 1000 hPa (pa/s)	0.04	-0.0358	-0.0038	-0.0296	-0.0111	-0.0213
Difference of temperature anomaly between 850 and 1000 hPa (K)	-0.716	-0.206	0.664	0.456	0.232	0.485

467

468


469 Figure 1. Interannual variation in the wintertime PM_{2.5} concentrations at 114 stations over the BTH region. In each
470 box, the central mark indicates the median, and the bottom and top edges of the box indicate the 25th and 75th
471 percentiles, respectively. The whiskers extending to the most extreme data points are considered outliers. The region
472 covered by the blue box in Fig. 2 is considered as the BTH region (113°–117.5°E and 36°–42°N).

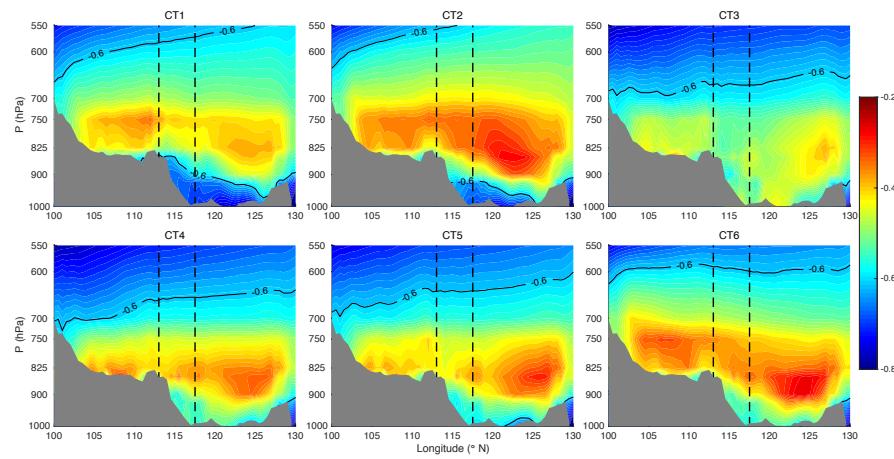
473


474 Figure 2. The distribution of sea level pressure (shaded, unit: pa) and 10 m wind fields (vector, unit: m/s) in each
475 circulation type. The number over each subplot indicates the occurrence frequency of the specific circulation type.
476 The solid blue box is the location of BTH region. The daily mean geopotential height fields at 925, 850 and 500 hPa
477 over the dashed blue box (105°–125°E and 30°–55°N) were applied to T-mode PCA method with the cost733 toolbox.
478 The region mean wind speed of each circulation type is shown in Table 2.

479

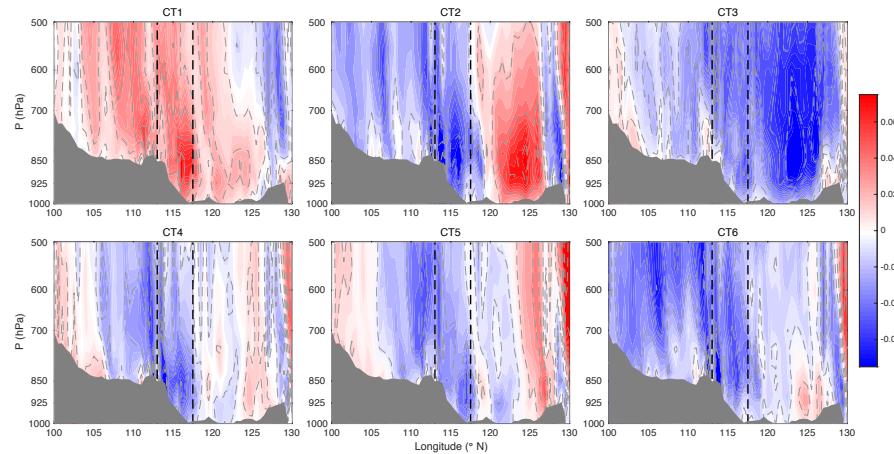
480

481 Figure 3. The distribution of sea level pressure (unit: pa) and 10 m wind fields (unit: m/s) anomaly in each circulation
482 type. The anomaly values are with respect to the 1980-2010 mean. Regional mean wind speed anomaly of each
483 circulation type is summarized in Table 2.

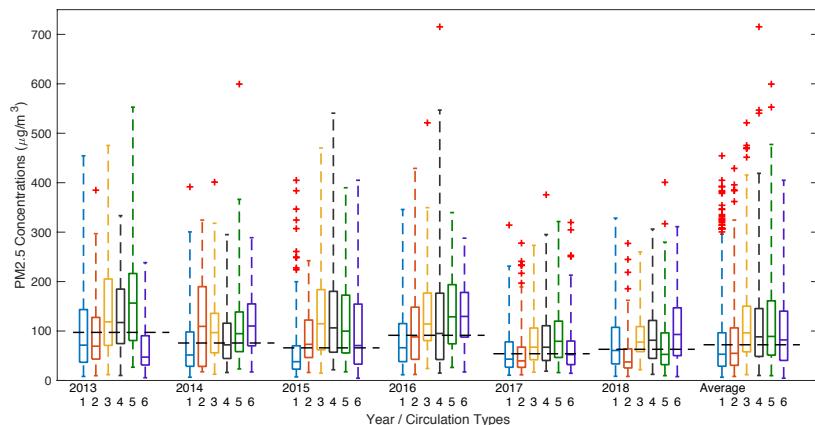


484

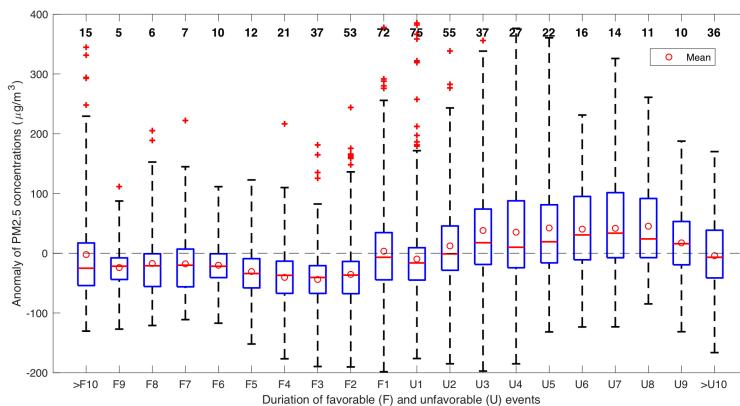
485 Figure 4. The distribution of relative humidity in each circulation type (unit: %). The anomaly values are with respect
486 to the 1980-2010 mean.


487

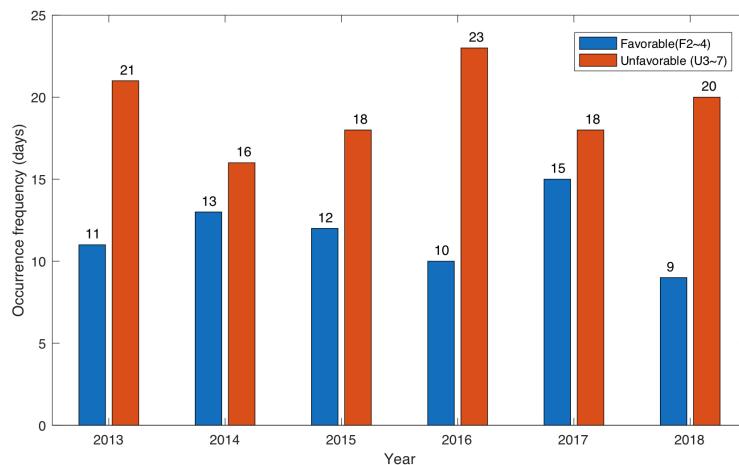
488


489

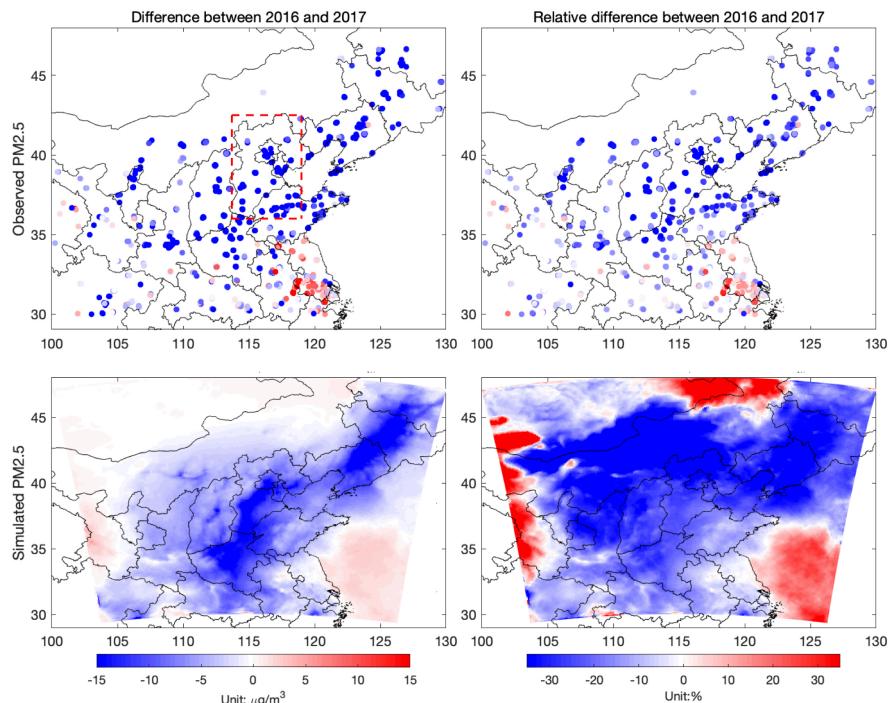
490 Figure 5. Zonal profile of temperature lapse rate over the BTH region (36° - 42° N) (unit: K/100 m). The gray region
491 indicates the average altitude over 36° - 42° N. The region between the two dashed lines is the horizontal location of
492 the BTH region (113° - 117.5° E).


493

494 Figure 6. Zonal vertical profile of vertical velocity anomaly over BTH region (unit: pa/s). The anomaly of the vertical
495 velocities is with respect to the 1980 to 2010 mean value.


496

497 Figure 7. The box plot of the PM_{2.5} concentrations varies with the circulation types. To exclude the effect of emission
498 reduction on the annual mean PM_{2.5} concentrations, the PM_{2.5} distributions at the year and multiyear (average) scales
499 are shown here, respectively. The dashed line for each year indicates the median PM_{2.5} concentrations in wintertime
500 of a specific year.


501

502 Figure 8. The daily PM_{2.5} concentration anomalies vary with favorable (F) and unfavorable (U) event durations. The
503 occurrences of CT1 and CT2 are collectively called favorable events, and CT3 to CT6 are referred to as unfavorable
504 events. U1 indicates an unfavorable circulation event lasting for one day, and U2 means a two-day event. The central
505 red line in each box indicates the median, and the circle is the mean value.

506

507 Figure 9. Occurrence frequencies of the effective favorable and unfavorable events. The effective favorable events
508 referred to the favorable events lasting for two to four days. The effective unfavorable events indicate the unfavorable
509 events lasting for three to seven days. The specific number of days for favorable/unfavorable events is shown on the
510 top of each bar.

511

512 Figure 10. Distributions of the observed and simulated PM_{2.5} difference between the winters of 2016 and 2017. The

513 left panel is the absolute value (unit: $\mu\text{g}/\text{m}^3$) and the right panel is the relative difference with respect to the mean
514 value of 2016 (unit: %). The simulated seasonal mean $\text{PM}_{2.5}$ concentrations during the two years are shown in Fig.
515 S8.

516

517

518 **Reference:**

519 Ackermann, I. J., Hass, H., Memmesheimer, M., Ebel, A., Binkowski, F. S., and Shankar, U.: Modal aerosol
520 dynamics model for Europe: Development and first applications, *Atmospheric environment*, 32, 2981-2999, 1998.

521 Bi, J., Huang, J., Holben, B. N., and Zhang, G.: Comparison of Key Absorption and Optical Properties Between Pure
522 and Transported Anthropogenic Dust over East and Central Asia, *Atmospheric Chemistry and Physics*, 16, 15501-
523 15516, 2016.

524 Cai, W., Li, K., Liao, H., and Wu, L.: Weather conditions conducive to Beijing severe haze more frequent under
525 climate change, *Nature Climate Change*, 7, 257-262, 2017.

526 Cavazos, T.: Using self-organizing maps to investigate extreme climate events: An application to wintertime
527 precipitation in the Balkans, *Journal of climate*, 13, 1718-1732, 2000.

528 Che, H., Xia, X., Zhao, H., Dubovik, O., Holben, B. N., Goloub, P., Cuevas-Agulló, E., Estelles, V., Wang, Y., and
529 Zhu, J.: Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China
530 Aerosol Remote Sensing Network, *Atmospheric Chemistry and Physics*, 19, 11843-11864, 2019.

531 Chen, H., Wang, H., Sun, J., Xu, Y., and Yin, Z.: Anthropogenic fine particulate matter pollution will be exacerbated
532 in eastern China due to 21st century GHG warming, *Atmospheric Chemistry and Physics*, 19, 233-243, 2019a.

533 Chen, S., Zhang, X., Lin, J., Huang, J., Zhao, D., Yuan, T., Huang, K., Luo, Y., Jia, Z., and Zang, Z.: Fugitive Road
534 Dust PM_{2.5} Emissions and Their Potential Health Impacts, *Environmental Science & Technology*, 53, 8455-8465,
535 2019b.

536 Chen, Z., Chen, D., Kwan, M.-P., Chen, B., Gao, B., Zhuang, Y., Li, R., and Xu, B.: The control of anthropogenic
537 emissions contributed to 80% of the decrease in PM 2.5 concentrations in Beijing from 2013 to 2017, *Atmospheric
538 Chemistry and Physics*, 19, 13519-13533, 2019c.

539 Notice of the General Office of the State Council on Issuing the Air Pollution Prevention and Control Action Plan:
540 http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm, access: 30/12/2019, 2013.

541 The State Council rolls out a three-year action plan for clean air: http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm, access: 30/12/2019, 2018.

543 Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Kiehl, J. T., Briegleb, B.,
544 Bitz, C., and Lin, S.-J.: Description of the NCAR community atmosphere model (CAM 3.0), NCAR Tech. Note
545 NCAR/TN-464+ STR, 226, 2004.

546 Dang, R., and Liao, H.: Severe winter haze days in the Beijing-Tianjin-Hebei region from 1985 to 2017 and the
547 roles of anthropogenic emissions and meteorology, *Atmospheric Chemistry and Physics*, 19, 10801-10816, 2019.

548 Ding, A., Huang, X., Nie, W., Chi, X., Xu, Z., Zheng, L., Xu, Z., Xie, Y., Qi, X., Shen, Y., Sun, P., Wang, J., Wang,
549 L., Sun, J., Yang, X. Q., Qin, W., Zhang, X., Cheng, W., Liu, W., Pan, L., and Fu, C.: Significant reduction of PM_{2.5}
550 in eastern China due to regional-scale emission control: evidence from SORPES in 2011–2018, *Atmos. Chem. Phys.*,
551 19, 11791-11801, 10.5194/acp-19-11791-2019, 2019.

552 Fan, H., Zhao, C., and Yang, Y.: A comprehensive analysis of the spatio-temporal variation of urban air pollution in
553 China during 2014–2018, *Atmospheric Environment*, 220, 117066, 2020.

554 Feng, J., Li, J., Liao, H., and Zhu, J.: Simulated coordinated impacts of the previous autumn North Atlantic
555 Oscillation (NAO) and winter El Niño on winter aerosol concentrations over eastern China, *Atmospheric Chemistry
556 and Physics*, 19, 10787-10800, 2019.

557 Gui, K., Che, H., Wang, Y., Wang, H., Zhang, L., Zhao, H., Zheng, Y., Sun, T., and Zhang, X.: Satellite-derived PM2.
558 5 concentration trends over Eastern China from 1998 to 2016: Relationships to emissions and meteorological
559 parameters, *Environmental pollution*, 247, 1125-1133, 2019.

560 Guo, J., Xu, H., Liu, L., Chen, D., Peng, Y., Yim, S. H. L., Yang, Y., Li, J., Zhao, C., and Zhai, P.: The trend reversal
561 of dust aerosol over East Asia and the North Pacific Ocean attributed to large-scale meteorology, deposition and soil
562 moisture, *Journal of Geophysical Research: Atmospheres*, 2019.

563 He, J., Lu, S., Yu, Y., Gong, S., Zhao, S., and Zhou, C.: Numerical Simulation Study of Winter Pollutant Transport
564 Characteristics over Lanzhou City, *Northwest China, Atmosphere*, 9, 382, 2018.

565 Hong, C., Zhang, Q., Zhang, Y., Davis, S. J., Tong, D., Zheng, Y., Liu, Z., Guan, D., He, K., and Schellnhuber, H. J.:
566 Impacts of climate change on future air quality and human health in China, *Proceedings of the National Academy
567 of Sciences*, 116, 17193-17200, 2019.

568 Huang, X., Wang, Z., and Ding, A.: Impact of Aerosol-PBL Interaction on Haze Pollution: Multiyear Observational
569 Evidences in North China, *Geophysical Research Letters*, 45, 8596-8603, 2018.

570 Huth, R.: A circulation classification scheme applicable in GCM studies, *Theoretical and applied climatology*, 67,
571 1-18, 2000.

572 Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynová, M., Kyselý, J., and Tveito, O. E.:
573 Classifications of atmospheric circulation patterns: recent advances and applications, *Annals of the New York
574 Academy of Sciences*, 1146, 105-152, 2008.

575 Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing
576 by long-lived greenhouse gases: Calculations with the AER radiative transfer models, *Journal of Geophysical
577 Research: Atmospheres*, 113, 2008.

578 Janjić, Z. I.: The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer,
579 and Turbulence Closure Schemes, *Monthly Weather Review*, 122, 927-945, 10.1175/1520-
580 0493(1994)122<0927:TSMECM>2.0.CO;2, 1994.

581 Leung, D. M., Tai, A. P., Mickley, L. J., Moch, J. M., Donkelaar, A. v., Shen, L., and Martin, R. V.: Synoptic
582 meteorological modes of variability for fine particulate matter (PM 2.5) air quality in major metropolitan regions of
583 China, *Atmospheric Chemistry and Physics*, 18, 6733-6748, 2018.

584 Li, G., Zavala, M., Lei, W., Tsimpidi, A., Karydis, V., Pandis, S. N., Canagaratna, M., and Molina, L.: Simulations
585 of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO
586 campaign, *Atmospheric Chemistry and Physics*, 11, 3789-3809, 2011.

587 Li, J., Lv, Q., Jian, B., Zhang, M., Zhao, C., Fu, Q., Kawamoto, K., and Zhang, H.: The impact of atmospheric
588 stability and wind shear on vertical cloud overlap over the Tibetan Plateau, *Atmospheric Chemistry and Physics*, 18,

589 7329-7343, 2018.

590 Li, J., Liao, H., Hu, J., and Li, N.: Severe particulate pollution days in China during 2013–2018 and the associated
591 typical weather patterns in Beijing-Tianjin-Hebei and the Yangtze River Delta regions, *Environmental pollution*, 248,
592 74-81, 2019.

593 Li, Q., Zhang, R., and Wang, Y.: Interannual variation of the wintertime fog–haze days across central and eastern
594 China and its relation with East Asian winter monsoon, *International Journal of Climatology*, 36, 346-354, 2016.

595 Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A. M., Guo, Y., Tong, S., Coelho, M. S., Saldiva, P. H., Lavigne, E., and
596 Matus, P.: Ambient particulate air pollution and daily mortality in 652 cities, *New England Journal of Medicine*, 381,
597 705-715, 2019.

598 Miao, Y., Guo, J., Liu, S., Liu, H., Li, Z., Zhang, W., and Zhai, P.: Classification of summertime synoptic patterns in
599 Beijing and their associations with boundary layer structure affecting aerosol pollution, *Atmospheric Chemistry and
600 Physics*, 17, 3097-3110, 2017.

601 Mu, M., and Zhang, R.: Addressing the issue of fog and haze: A promising perspective from meteorological science
602 and technology. *Science China Earth Science*, 57, 1–2, 2017.

603 Philipp, A., Beck, C., Esteban, P., Kreienkamp, F., Krennert, T., Lochbihler, K., Lykoudis, S. P., Pianko-Kluczynska,
604 K., Post, P., and Alvarez10, D. R.: cost733class-1.2 User guide, Augsburg, Germany, 10-21, 2014.

605 Schell, B., Ackermann, I. J., Hass, H., Binkowski, F. S., and Ebel, A.: Modeling the formation of secondary organic
606 aerosol within a comprehensive air quality model system, *Journal of Geophysical Research: Atmospheres*, 106,
607 28275-28293, 2001.

608 Song, Z., Fu, D., Zhang, X., Wu, Y., Xia, X., He, J., Han, X., Zhang, R., and Che, H.: Diurnal and seasonal variability
609 of PM2. 5 and AOD in North China plain: Comparison of MERRA-2 products and ground measurements,
610 *Atmospheric environment*, 191, 70-78, 2018.

611 Stockwell, W. R., Middleton, P., Chang, J. S., and Tang, X.: The second generation regional acid deposition model
612 chemical mechanism for regional air quality modeling, *Journal of Geophysical Research: Atmospheres*, 95, 16343-
613 16367, 1990.

614 Tao, S., Ru, M. Y., Du, W., Zhu, X., Zhong, Q. R., Li, B. G., Shen, G. F., Pan, X. L., Meng, W. J., Chen, Y. L., Shen,
615 H. Z., Lin, N., Su, S., Zhuo, S. J., Huang, T. B., Xu, Y., Yun, X., Liu, J. F., Wang, X. L., Liu, W. X., Cheng, H. F.,
616 and Zhu, D. Q.: Quantifying the rural residential energy transition in China from 1992 to 2012 through a
617 representative national survey, *Nature Energy*, 3, 567-573, 10.1038/s41560-018-0158-4, 2018.

618 Tie, X., Zhang, Q., He, H., Cao, J., Han, S., Gao, Y., Li, X., and Jia, X. C.: A budget analysis of the formation of
619 haze in Beijing, *Atmospheric Environment*, 100, 25-36, 2015.

620 Valverde, V., Pay, M. T., and Baldasano, J. M.: Circulation-type classification derived on a climatic basis to study
621 air quality dynamics over the Iberian Peninsula, *International Journal of Climatology*, 35, 2877-2897, 2015.

622 Wang, K., Dickinson, R. E., and Liang, S.: Clear sky visibility has decreased over land globally from 1973 to 2007,
623 *Science*, 323, 1468-1470, 2009.

624 Wang, X., Wang, K., and Su, L.: Contribution of atmospheric diffusion conditions to the recent improvement in air

625 quality in China, *Scientific reports*, 6, 36404, 2016.

626 Wang, X., Wen, H., Shi, J., Bi, J., Huang, Z., Zhang, B., Zhou, T., Fu, K., Chen, Q., and Xin, J.: Optical and
627 microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over
628 northwestern China, *Atmospheric Chemistry and Physics*, 18, 2119-2138, 2017.

629 Wang, X., Dickinson, R. E., Su, L., Zhou, C., and Wang, K.: PM_{2.5} pollution in China and how it has been
630 exacerbated by terrain and meteorological conditions, *Bulletin of the American Meteorological Society*, 99, 105-119,
631 2018.

632 Wang, X., Zhang, R., and Yu, W.: The effects of PM_{2.5} concentrations and relative humidity on atmospheric visibility
633 in Beijing, *Journal of Geophysical Research: Atmospheres*, 124, 2235-2259, 2019a.

634 Wang, Y., Li, W., Gao, W., Liu, Z., Tian, S., Shen, R., Ji, D., Wang, S., Wang, L., and Tang, G.: Trends in particulate
635 matter and its chemical compositions in China from 2013–2017, *Science China Earth Sciences*, 1-15, 2019b.

636 Xu, J., Chang, L., Qu, Y., Yan, F., Wang, F., and Fu, Q.: The meteorological modulation on PM_{2.5} interannual
637 oscillation during 2013 to 2015 in Shanghai, China, *Science of The Total Environment*, 572, 1138-1149, 2016.

638 Yin, Z., Wang, H., and Ma, X.: Possible Relationship between the Chukchi Sea Ice in the Early Winter and the
639 February Haze Pollution in the North China Plain, *Journal of Climate*, 32, 5179-5190, 2019.

640 Zhai, S., Jacob, D. J., Wang, X., Shen, L., Li, K., Zhang, Y., Gui, K., Zhao, T., and Liao, H.: Fine particulate matter
641 (PM_{2.5}) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology,
642 *Atmos. Chem. Phys.*, 19, 11031-11041, 10.5194/acp-19-11031-2019, 2019.

643 Zhang, J. P., Zhu, T., Zhang, Q., Li, C., Shu, H., Ying, Y., Dai, Z., Wang, X., Liu, X., and Liang, A.: The impact of
644 circulation patterns on regional transport pathways and air quality over Beijing and its surroundings, *Atmospheric
645 Chemistry and Physics*, 12, 5031-5053, 2012.

646 Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T., Zheng, B., Lu, Z., and Streets, D. G.:
647 Transboundary health impacts of transported global air pollution and international trade, *Nature*, 543, 705, 2017.

648 Zhang, Q., and Geng, G.: Impact of clean air action on PM 2.5 pollution in China, in, Springer, 2019.

649 Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., and Liu, W.: Drivers of
650 improved PM_{2.5} air quality in China from 2013 to 2017, *Proceedings of the National Academy of Sciences*, 116,
651 24463-24469, 2019a.

652 Zhang, R., Li, Q., and Zhang, R.: Meteorological conditions for the persistent severe fog and haze event over eastern
653 China in January 2013, *Science China Earth Sciences*, 57, 26-35, 2014.

654 Zhang, R.: Atmospheric science: Warming boosts air pollution, *Nature Climate Change*, 7, 238-239, 2017.

655 Zhang, X., Xu, X., Ding, Y., Liu, Y., Zhang, H., Wang, Y., and Zhong, J.: The impact of meteorological changes from
656 2013 to 2017 on PM 2.5 mass reduction in key regions in China, *Science China Earth Sciences*, 1-18, 2019b.

657 Zhang, Y., Vu, V. T., Sun, J., He, J., Shen, X., Lin, W., Zhang, X., Zhong, J., Gao, W., and Wang, Y.: Significant
658 changes in chemistry of fine particles in wintertime Beijing from 2007 to 2017: Impact of clean air actions,
659 *Environmental science & technology*, 2019c.

660 Zhao, B., Zheng, H., Wang, S., Smith, K. R., Lu, X., Aunan, K., Gu, Y., Wang, Y., Ding, D., and Xing, J.: Change in
661 household fuels dominates the decrease in PM_{2.5} exposure and premature mortality in China in 2005–2015,
662 *Proceedings of the National Academy of Sciences*, 115, 12401-12406, 2018a.

663 Zhao, C., Wang, Y., Shi, X., Zhang, D., Wang, C., Jiang, J. H., Zhang, Q., and Fan, H.: Estimating the Contribution
664 of Local Primary Emissions to Particulate Pollution Using High-Density Station Observations, *Journal of*
665 *Geophysical Research: Atmospheres*, 124, 1648-1661, 2019a.

666 Zhao, C., Yu, Y., Kuang, Y., Tao, J., and Zhao, G.: Recent progress of aerosol light-scattering enhancement factor
667 studies in China, *Advances in Atmospheric Sciences*, 36, 1015-1026, 2019b.

668 Zhao, H., Che, H., Xia, X., Wang, Y., Wang, H., Wang, P., Ma, Y., Yang, H., Liu, Y., and Wang, Y.: Multiyear Ground-
669 Based Measurements of Aerosol Optical Properties and Direct Radiative Effect Over Different Surface Types in
670 Northeastern China, *Journal of Geophysical Research: Atmospheres*, 123, 13,887-813,916, 2018b.

671 Zhao, S., Zhang, H., and Xie, B.: The effects of El Niño–Southern Oscillation on the winter haze pollution of China,
672 *Atmospheric Chemistry and Physics*, 18, 1863, 2018c.

673 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., and Qi, J.: Trends in China's
674 anthropogenic emissions since 2010 as the consequence of clean air actions, *Atmospheric Chemistry and Physics*,
675 18, 14095-14111, 2018.

676 Zhong, Q., Ma, J., Shen, G., Shen, H., Zhu, X., Yun, X., Meng, W., Cheng, H., Liu, J., Li, B., Wang, X., Zeng, E. Y.,
677 Guan, D., and Tao, S.: Distinguishing Emission-Associated Ambient Air PM_{2.5} Concentrations and Meteorological
678 Factor-Induced Fluctuations, *Environmental Science & Technology*, 52, 10416-10425, 10.1021/acs.est.8b02685,
679 2018.

680

681

682